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Differentials of Oriented Curves

Let C be an oriented curve (in R2 or R3), parametrized by

r(t), a ≤ t ≤ b (with r′(t) 6= 0).

We define the following differentials associated to C/r.

ds = |r′(t)| dt = |dr| =
√
dx2 + dy2 (+dz2)

dx = x ′(t) dt, dy = y ′(t) dt (and dz = z ′(t) dt)

dr = r′(t) dt = i dx + j dy (+k dz)

These are used to integrate functions and vector fields along C .
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Example 1

Example

Evaluate

∫
C

4x3 ds, where C is the portion of y = x3 − 1 in the

fourth quadrant, oriented upward.

Since C is the graph of a function, we set x = t and y = t3 − 1.
We see from the graph that 0 ≤ t ≤ 1. Now

dx = dt, dy = 3t2 dt ⇒ ds =
√

12 + (3t2)2 dt =
√

1 + 9t4 dt.

Hence∫
C

4x3 ds =

∫ 1

0
4t3
√

1 + 9t4 dt =
2(1 + 9t4)3/2

27

∣∣∣∣∣
1

0

=
−2 + 20

√
10

27
.
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Example 2

Example

Evaluate
∫
C xy2 dx,

∫
C xy2 dy and

∫
C xy2 ds where C is the right

half of x2 + y2 = 16, oriented counterclockwise.

Since C is part of a circle at the origin, we set x = 4 cos t and
y = 4 sin t. We see from the graph that −π/2 ≤ t ≤ π/2. Now

dx = −4 sin t dt, dy = 4 cos t dt ⇒ ds = 4 dt.

Hence∫
C
xy2 ds =

∫ π/2

−π/2
44 cos t sin2 t dt = 44 · sin3 t

3

∣∣∣∣π/2
−π/2

=
29

3
.
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Example 2
(Continued)

Furthermore∫
C
xy2 dx = − 44

∫ π/2

−π/2
cos t sin3 t dt = −44 · sin4 t

4

∣∣∣∣π/2
−π/2

= 0 .

And finally∫
C
xy2 dy = 44

∫ π/2

−π/2
cos2 t sin2 t dt = 44

∫ π/2

−π/2

(
sin 2t

2

)2

dt

= 43
∫ π/2

−π/2

1− cos(4t)

2
dt = 25 ·

(
t − sin(4t)

4

)∣∣∣∣π/2
−π/2

= 25π.
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Example 3

Example

Evaluate
∫
C 〈x − y , xy〉 · dr, where C is the portion of x2 + y2 = 4

from (2, 0) to (0,−2), counterclockwise.

Since C is part of a circle at the origin, we set x = 2 cos t and
y = 2 sin t. We see from the graph that 0 ≤ t ≤ 3π/2. Now

dr = 〈−2 sin t, 2 cos t〉 dt,

so that

F · dr = (2 cos t − 2 sin t)(−2 sin t) + (4 cos t sin t)(2 cos t) dt

= −4 sin t cos t + 4 sin2 t + 8 cos2 t sin t dt.
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Example 3
(Continued)

Hence∫
C
〈x − y , xy〉 · dr =

∫ 3π/2

0
−4 sin t cos t + 4 sin2 t + 8 cos2 t sin t dt

=
2

3
+ 3π .

Remarks:

The first and last terms in the integral can be simultaneously
antidifferentiated with the substitution u = cos t.

The middle term requires the half angle formula
sin2 t = 1−cos 2t

2 .
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Remarks
Parametrization Independence and Vanishing Tangent

Any line integral

∫
C

depends on C only, not on the choice of

r(t) describing it.

We can actually allow r′ = 0 at finitely many points in [a, b].

One must make sure r′ doesn’t change direction and retrace
part of C at these points.

The moral is that r′ 6= 0 is not as important as r being
one-to-one.
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Remarks
Some Basic Relationships

Let C be an oriented curve, starting at A and ending at B.∫
C
dx = x(B)− x(A) and likewise for dy and dz .

Let −C denote C with the opposite orientation. Then∫
−C

f dx = −
∫
C
f dx ,

∫
−C

f ds =

∫
C
f ds,

∫
−C

F · dr = −
∫
C

F · dr.

These can be convenient when parametrizing in a particular
direction is troublesome (e.g. a clockwise oriented circle).
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Piecewise Line Integrals

If C is made up of smooth pieces C1,C2,C3, . . ., then∫
C
f dx =

∫
C1

f dx +

∫
C2

f dx +

∫
C3

f dx · · · ,

and likewise for all other differentials.

Example

Evaluate
∫
C xy dx + (x − y) dy, where C is the piecewise linear

path from (0, 0) to (2, 0) to (3, 2).
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A Piecewise Example

C consists of the line segments C1 from (0, 0) to (2, 0), and C2

from (2, 0) to (3, 2).

On C1: y = 0 and dy = 0. Hence
∫
C1

xy dx + (x − y) dy = 0 .

On C2: r(t) = 〈2, 0〉+ t〈1, 2〉 = 〈2 + t, 2t〉 with 0 ≤ t ≤ 1.

Thus dx = dt and dy = 2 dt.

So ∫
C2

xy dx + (x − y) dy =

∫ 1

0
(2 + t)(2t) + (2 + t − 2t)2 dt

=

∫ 1

0
2t2 + 2t + 4 dt =

2

3
t3 + t2 + 4t

∣∣∣∣1
0

=
17

3
.
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Interpreting Differentials

Let f be a function and F be a vector field. The line integrals∫
C
f ds,

∫
C
f dx (or dy or dz),

∫
C

F · dr

can all be interpreted using Riemann sums.

ds represents an infinitesimal unit of arclength on C .

dx represents an infinitesimal change in x along C . Likewise
with dy and dz .

dr represents an infinitesimal displacement along C .

In certain situations these allow us to interpret the line integrals
themselves.
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Arclength Integrals

If f = f (x , y), then ∫
C
f ds

is the (signed) area of the surface between C and the graph of f (a
“fence”).

In particular, if f ≡ 1, then∫
C
ds = arclength of C .

Daileda Line Integrals



Differentials and Integrals Examples Properties Interpretations Conservative Fields

Example 4

Example

Find the arclength of the portion of the helix r(t) = 〈cos t, sin t, t〉
between (1, 0, 0) and (1, 0, 2π).

We have

dr = 〈− sin t, cos t, 1〉 dt ⇒ ds = |dr| =
√

2 dt.

So the length is ∫
C
ds =

∫ 2π

0

√
2 dt = 2π

√
2.

Remark: This can also be computed geometrically by “unrolling”
the cylinder that the helix sits on.
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Line Integrals of Vector Fields

The differentials dx , dy , dz and dr can be “interpreted”
simultaneously.

If F = P i + Qj + Rk, then on the one hand we have∫
C

F · dr =

∫
C

(P i + Qj + Rk) · (idx + jdy + kdz)

=

∫
C
P dx + Q dy + R dz .

But we also have∫
C

F ·dr =

∫ b

a
F ·r′(t)dt =

∫ b

a

F · r′(t)

|r′(t)|
|r′(t)| dt =

∫
C

projT F ds,

where T is the tangent vector to C at any point.
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Integrating projT F

What does the line integral∫
C

F · dr =

∫
C

projT F ds

measure?

Recall that projT F is:

∗ positive when T and F tend to point in the same direction;

∗ zero when T and F are orthogonal;

∗ negative otherwise.

The integral therefore measures the extent to which F “points
along” C .
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Example 5

Example

For each curve C shown, choose an orientation and determine if∫
C F · dr is positive, negative or zero.
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Work

If F is a force field, we see that∫
C

F · dr = work done by F on a particle moving along C .

If F is the only force acting on the particle, then by Newton’s
second law, F = mr′′ and∫

C
F · dr =

∫ b

a
mr′′(t) · r′(t) dt =

m

2

∫ b

a

d

dt
(r′(t) · r′(t)) dt

=
m

2
(|r′(b)|2 − |r′(a)|2) =

mv2f
2
−

mv2i
2

= ∆Ek ,

the change in kinetic energy from one end of C to the other.
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Integrating Conservative Fields

Suppose that F is conservative with potential function f .

Then on any curve we have∫
C

F · dr =

∫
C
fx dx + fy dy + fz dz

=

∫ b

a

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt
dt

=

∫ b

a

df

dt
dt = f (r(b))− f (r(a))

= f (end of C )− f (beg. of C ).

This is the Fundamental Theorem of Calculus for Line Integrals.
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The Fundamental Theorem

Theorem (Fundamental Theorem of Calculus for Line Integrals)

If F is a conservative vector field with potential function f , then for
any curve C from A to B we have∫

C
F · dr = f (B)− f (A).

Consequently:∫
C

F · dr is path independent; it depends only on the

endpoints of C .∫
C

F · dr = 0 for any closed curve C (when A= B).
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Path Independence

If F = ∇f , then
∫
C F · dr =

∫
C ′ F · dr and

∫
C ′′ F · dr = 0.

A

B

C

C'

C''

Warning

The FTOC for Line Integrals only applies when F = ∇f . Not all F
have this property!
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Example 6

Example

Explain why the vector field shown below is not conservative.
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Example 7

Example

Evaluate

∫
C

(x + 2xy) dx + x2 dy where C is the curve consisting

of the line segments from (0, 0) to (2, 1) to (4, 3) to (5, 0).

Notice that if f = x2y + x2

2 , then

∇f = 〈2xy + x , x2〉,

which is the vector field under consideration.

So by the Fundamental Theorem∫
C

(x + 2xy) dx + x2 dy = f (5, 0)− f (0, 0) =
25

2
.
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Example 8

Example

Evaluate

∫
C

F · dr where F = x i + (y + 2)j and C is given by

r(t) = 〈t − sin t, 1− cos t〉, 0 ≤ t ≤ 2π.

We could compute dr, but instead we notice that

∇
(
x2

2
+

y2

2
+ 2y

)
︸ ︷︷ ︸

f

= x i + (y + 2)j = F.

Hence∫
C

F · dr = f (r(2π))− f (r(0)) = f (2π, 0)− f (0, 0) = 2π2 .
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Example 9

Example

Evaluate

∫
C

F · dr where F = (y + z)i + (x + z)j + (x + y)k and C

is the line segment from (1, 0, 0) to (3, 4, 2).

Not hard to parametrize a line segment, but again we have

∇ (xy + xz + yz)︸ ︷︷ ︸
f

= (y + z)i + (x + z)j + (x + y)k = F.

So once more∫
C

F · dr = f (3, 4, 2)− f (1, 0, 0) = 26 .
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Characterizing Conservative Fields

Path independence of line integrals turns out characterize
conservative vector fields.

If

∫
C

F · dr is path independent in some domain, it is possible

to construct a potential function by “integrating F to X”.

This means the Fundamental Theorem is actually an “if and
only if” result.

Theorem

A vector field F with domain Ω is conservative if and only if∫
C

F · dr is path independent for all C ⊂ Ω.
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Derivatives of Conservative Fields

Testing path independence for all curves can be difficult. How else
might we identify a conservative field?

Notice that

∇×∇f =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

fx fy fz

∣∣∣∣∣∣
= (fzy − fyz)i− (fzx − fxz)j + (fyx − fxy )k = 0,

by Clairaut’s theorem.

Moral

If a field F is conservative, then ∇× F = 0.
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Example 10
A Nonconservative Field

The vector field F = xy i + yz j + xz k is not conservative since

∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

xy yz xz

∣∣∣∣∣∣
= (−y) i− (z) j + (−x) k

= −(y i + z j + x k)

6= 0.
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Closed and Exact Forms

Consider a vector field F = P i +Q j +R k. The associated quantity

ω = P dx + Q dy + R dz

is called a (differential) 1-form.

Notice that we can write∫
C

F · dr =

∫
C
P dx + Q dy + R dz =

∫
C
ω.

ω is called exact when F = ∇f . We write ω = df

ω is called closed when ∇× F = 0. We write dω = 0.
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Exact ⇒ Closed, but...

We have seen that:

Theorem

Every exact form is closed.

However:

Warning

Not every closed form is exact! Depending on the domain, there
may exist F that are not conservative, but for which ∇× F = 0.

That being said, as a consequence of Green’s and Stokes’ theorems:

Theorem

If Ω is a simply connected domain (e.g. Ω = R2 or Ω = R3), then
every closed form on Ω is exact.
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Example 11

Example

Is ω = y(z + 2) dx + (xz + 2x + 4) dy + (xy + 3) dz exact? If so,
find a potential function.

Because ω is defined on R3, and dω = 0 (exercise),

ω is exact.

To find a potential we write

fx = y(z + 2),

fy = xz + 2x + 4,

fz = xy + 3,

then repeatedly integrate and substitute.
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Example 11
Continued

We have

f =

∫
fx ∂x =

∫
y(z + 2) ∂x = xy(z + 2) + g(y , z)︸ ︷︷ ︸

“constant”

.

Now compare to the second and third equations:

xz + 2x + 4 = fy = x(z + 2) + gy ⇒ gy = 4,

xy + 3 = fz = xy + gz ⇒ gz = 3.

Integrate gy = 4:

g =

∫
gy ∂y =

∫
4∂y = 4y + h(z)︸︷︷︸

“constant”

.

And compare to gz :

3 = gz = h′(z) ⇒ h(z) = 3z + C .
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Example 11
Continued, continued

So the potentials of ω are

f = xy(z+2)+g = xy(z+2)+4y+h = xy(z + 2) + 4y + 3z + C .

Remarks:

The constant C is arbitrary. Any choice will satisfy ω = df .

If ω is known to be exact, the process above will always find f .

In simple cases one can also find f by “guess and check.”

Daileda Line Integrals



Differentials and Integrals Examples Properties Interpretations Conservative Fields

Example 12
A Non-Exact Closed Form

Consider the 1-form ω =
−y dx + x dy

x2 + y2
on the domain R− {0},

which is not simply connected.

Let C be the unit circle, traversed counterclockwise, which can be
parametrized by

r(t) = cos t i + sin t j, 0 ≤ t ≤ 2π.

Thus dx = − sin t dt, dy = cos t dt and x2 + y2 = 1, so that∫
C
ω =

∫ 2π

0
(− sin t)(− sin t) + (cos t)(cos t) dt =

∫ 2π

0
1 dt = 2π.
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So ω is not exact.

However

dω =
∂

∂x

(
x

x2 + y2

)
− ∂

∂y

(
−y

x2 + y2

)

=
(x2 + y2)− x(2x)

(x2 + y2)2
+

(x2 + y2)− y(2y)

(x2 + y2)2

=
2(x2 + y2)− 2x2 − 2y2

(x2 + y2)2
= 0,

so that ω is closed!
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(More) Work

If F = ∇f is a conservative force field, then Ep = −f is the
potential energy. If C is any path from A to B,∫

C
F · dr = f (B)− f (A) = Ep(A)− Ep(B).

If a particle moves along C under the influence of F only, by earlier
work

Ek(B)− Ek(A) =

∫
C

F · dr = Ep(A)− Ep(B),

or
Ep(A) + Ek(A) = Ep(B) + Ek(B).

That is, the total energy E = Ep + Ek is conserved by F.
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Conservative Fields are ... Conservative!

This shows:

Theorem

A conservative force field obeys the Law of Conservation of Energy.

Put another way:

Moral

The quantity “conserved” by a conservative vector field is the total
energy.
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